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Wake collapse in the thermocline and internal solitary waves 
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Experiments were conducted in a long channel in which a mixed region was allowed 
to collapse in the thermocline region of a stratified fluid. Two solitary wave-like dis- 
turbances were generated travelling to the right and left of the mixed region. The 
mixed region fluid was partly entrained in these waves. The waves were allowed to 
reflect from the end walls and to collide after the reflexions. The velocity structure of 
the wave was studied before, during and after a collision by means of hot-film anemo- 
metry and streak pictures. Wave speeds were accurately determined by two hot-film 
probes. Permanence of form and amplitude decay of the waves were observed over 
long distances and through successive collisions and reflexions. An analytical result 
for the structure of the solitary wave in an ambient stratification of the hyperbolic 
tangent type, but of finite total water depth, was obtained using Benney’s method. 
Excellent agreement between the experimental and theoretical results was obtained. 
The results showed that the generated waves were indeed solitary waves. 

1. Introduction 
The collapse of a mixed region of fluid in a stratified medium has been studied 

extensively for the case of linear stratification. Wu ( 1  969) found that as the mixed 
region spread out horizontally in space and monotonically in time, internal gravity 
waves were also created in the ambient fluid. In  the present paper, we present the 
results of an experimental investigation on the collapse of a mixed region a t  mid- 
depth of a thermocline-type stratification, in which the extent of the mixed region 
was generally larger than the length scale of the thermocline thickness. The experi- 
ments were conducted in a long rectangular channel. The events following the collapse 
were quite different from those observed in a linear stratification. Two solitary wave- 
like disturbances were created, one propagating to the right and the other to the left. 
The mixed region fluid was partly entrained in these waves, which propagated un- 
changed for very long distances. In  this paper we focus our attention on these waves. 
Detailed measurements were made on their propagation speed and their structure 
and their collisions with each other. An analytical solution was also obtained for a 
solitary wave in a thermocline stratification (as represented by a hyperbolic-tangent 
profile) for a medium of finite total depth using the method given by Benney (1966). 
The solution is valid within the shallow water approximation. Excellent agreement 
was obtained between the experimentally determined quantities and the theoretical 
result. The agreement confirmed the disturbances to be solitary waves obeying the 
Korteweg-de Vries equation. 
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Density profile 

FIGURE I .  Schematic diagram showing general arrangement of the positions 
of the mixer, the hot-film probes and the slit-light boxes. 

2. Experimental set-up and procedure 
The experiments were conducted in a rectangular tank of clear acrylic sheet, 14 in. 

wide, 24 in. deep and 26 f t  34 in. long. 
The mixed region was created in situ by using a rotary paddle mixer made of nylon 

fish lines tied around wire frames forming four blades. The paddle offered little resist- 
ance to the flowing fluid when stationary, but mixed the fluid efficiently when turned 
vigorously about its axis. The channel with the paddle in place is shown schematically 
in figure 1.  The paddle was 3 in. in diameter and shown in detail in figure 1 .  

The channel was filled with a layer of salt water of density p2 on the bottom and an 
equal depth of fresh water of density p1 on the top. Before filling the fresh water layer, 
three thin dyed layers of intermediate density were filled by means of a floater. The 
total depth was usually 16 in. with the pycnocline located a t  the mid-depth. The fluid 
was then allowed to sit for half to one day for diffusion effects to create a smooth 
density profile. Density profiles were measured before and after each experiment by 
a conductivity probe. The resultant profile can be fitted by a hyperbolic-tangent 
profile of the form p ( z )  = po( 1 - 6 tanh 012) where po = (pl +p2) /2 ,  6 = (p2 - p1)/(p2 + pl )  
and a-l is the representative half-depth of the pycnocline and z denotes the vertical 
co-ordinate. 

The experiments were conducted in the following manner. The mixed region was 
first created by vigorously and rapidly rotating the paddle mixer through 260" 
clockwise and counter-clockwise several times. This process took place in less than 
four seconds. The dye in the dyed layers in the immediate vicinity of the mixer 
delineated, after the mixing process, the approximate extent of the mixed region. 
The experiment was reckoned to commence at  the end of the agitation action of the 
mixer. 

Three different measurement techniques were employed in the experiment. 
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(1) Direct flow visualization, by photographing the dyed layers and the dyed fluid 
of the mixed region. 

( 2 )  Streak-line pictures. Streak-line pictures were made using grounded Pliolite 
particles as tracers. These particles were almost neutrally buoyant and could even 
be made to  achieve slightly different densities permanently by differentially heating 
them in water. The particles were introduced into the fluid through the free surface 
before the commencement of the experiment. They sank slowly (less than 0.05 in./s) 
to  different depths of the channel. Two slit-light boxes with high-intensity light with 
a total slot length of 2.3 f t  were placed on top of the channel (as shown in figure 1)  
with the opening slot located 1 in. above the water surface. The sheet of light defined 
a vertical plane and illuminated the Pliolite particles in the lighted plane. Streak-line 
pictures were taken by a Canon camera equipped with a telephoto lens and a motor 
drive. Tri-X (ASA 400) film was used. The camera was located 12 f t  from the illumi- 
nated plane, so that the illuminated plane occupied the complete scene seen by the 
camera. Sequential time-exposure pictures were taken, with the room fully darkened. 
Time exposures of 1 s or 16 s were used. The streak-line pictures thus obtained repre- 
sent the instantaneous flow pattern in the illuminated plane. The length of each streak 
could also be used t o  estimate instantaneous fluid velocity. 

( 3 )  Hot-film anemometry. Two hot-film anemometers (Thermosystem Model 1050) 
were used. The two hot-film probes were located a t  two different distances to the 
right of the centre of the mixer a t  mid-depth (see figure 1). The probes measured the 
horizontal velocity of the fluid a t  these locations. The output from the probes was 
recorded on a high-precision Sanborn strip chart recorder continuously throughout 
the duration of the experiment. By measuring the arrival times of the peaks of the 
disturbance, the wave speed could be accurately determined. The temporal (and 
spatial) velocity structure a t  mid-depth and the flow behaviour during collision were 
measured quantitatively. Temporal decay of the amplitude was also recorded. 

3. Experimental and theoretical results and discussion 
The following sequence of events was observed in a typical experiment. A mixed 

region approximately delineated by the entrained dye was formed by the mixer. 
The mixed region started to collapse a t  the commencement of the experiment. As it 
collapsed, two solitary wave-like vertically symmetric bulges were observed with the 
indication that the fluid of the mixed region occupied the core of each bulge. One 
travelled to  the right and the other to  the left of the mixer. Both bulges were able to 
travel without change in form. They were reflected, without change in form, from the 
end walls of the channel and collided head-on a t  the conjugate point (i.e. the location 
at the same distance from the right end wall as that  of the mixer from the left end wall). 
During collision the two bulges appeared to superpose, resulting in apparent doubling 
of the amplitude of the bulge. The individual bulges re-emerged again without change 
in form after the collision. These features suggest strongly that the disturbances 
resulting from wake collapse in the thermocline are solitary waves similar to  those 
observed by Davis & Acrivos (1967). A typical solitary wave is shown in figure 2 
(plate i). The grid a t  the back consists of 1 in. squares. Figure 2 ( a )  shows the wave 
immediately after its formation travelling to the right. Figure 2 ( b )  shows the same 
wave at a later time. As the wave travelled over long distances, its amplitude gradually 
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attenuated due to  viscosity and its wavelength gradually increased. The form, how- 
ever, remained similar. Towards the final stages, the amplitude became unobservably 
small. However, the hot-film record of the horizontal velocity a t  mid-depth con- 
tinued to delineate the typical signal of the wave with a well-defined peak. Because 
of this feature, the wave speed of the infinitesimal-amplitude wave was accurately 
measurable. 

Before presenting the main experimental results, their details, and their interpre- 
tation, let us investigate first, from a theoretical view-point, the features of a solitary 
wave in a thermocline-type stratification of finite total depth. 

3.1. Theoretical consideration 

A number of theoretical works have been published on internal solitary waves in a 
continuously stratified fluid, principally by Benney (1966), Benjamin (1966, 19671, 
Davis & Acrivos (19671, and Ono (1975). Benjamin (1-967) S S E & ~ E ~  a hyperbdk 
tangent density profile for a medium of infinite total depth and Davis & Acrivos 
( 1967) considered a similar three-layered stratification of infinite total depth. 

If a denotes the wave amplitude, 1 the wave length and d the undisturbed half- 
depth of the fluid (see figure l ) ,  two important dimensionless length ratios can be 
formed, namely, an amplitude parameter, 8 = a/d ,  and a wavelength parameter, 
p = d / l .  Benney’s (1966) method is to expand the stream function and density fields 
in terms of e and p2 and develop asymptotic solutions in the neighbourhood of 
6 = p2 = 0 with e/p2 = 1 (i.e. a12 = d3). The theory is thus a ‘shallow-water’ theory. 
It is also well known that e/p2 = 1 represents the condition that the large-amplitude 
breaking tendency is balanced by dispersion (see Ursell 1953 and Benney 1966). 
This balance aIlows the existence of the solitary wave of the Korteweg-de Vries 
(KdV) type with a sech2 wave form. In  the theory of Benjamin (1967) and Ono (1975), 
the total depth of the fluid is infinite. The fluid is, however, divided into two regions, 
one of half-depth h in which the density varies continuously with height, and an outer 
one, extending to  infinity, in which the density is constant. [For the hyperbolic- 
tangent profile h is not precisely defined as pointed out by Benjamin (1967). In any 
case, h is several times larger than a-1, the ‘representative half-depth’ of the thermo- 
cline. This point is not really important in the following development but should be 
noted.] The amplitude and wavelength parameters are now defined as 6’ = a/h  and 
pf = h/l .  These authors then showed that another kind of solitary wave exists in the 
neighbourhood of E’ = p‘ = 0 with d/p‘ = 1 (i.e. a1 = h2).  This solitary wave is 
governed by an equation different from the KdV equation (an equation popularly 
known as the Benjamin-Ono equation), and has a wave form which is described by 
a Lorentzian distribution. 

I n  this section, we apply Benney’s method to the study of the solitary wave in a 
fluid of limited total depth with a hyperbolic-tangent density profile (or thermocline 
profile). The thermocline region is located a t  mid-depth. The theoretical development 
of the method is found in Benney (1966) and will not be repeated in detail here. We 
denote the horizontal and vertical and time co-ordinates by x, z and t and introduce 
dimensionless quantities 2 = x/1, z“ = z/d,  t = ( U / l ) t  where U = (gd)). The non- 
dimensional stream function is then written as 
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where the superscripts (i,j) are associated with the orders of c and p2 respectively, 
the subscripts denote differentiation, and A is given by 

A;= -EoA,-+c2rAA~++2sA,E5+ ... ( 2 )  

in which Eo = co/U, with co denoting the dimensional zeroth order wave speed, and s 
and r are constants determinable from the zeroth-order solution. To the first order, 
with e = p2, (2) is the well-known Korteweg-de Vries equation which governs the 
evolution of an initial disturbance. This equation has a solitary wave solution pro- 
pagating in one direction: 

A(3, t )  = a, sech2 b[Z - (4 + EE' )  l], (3) 

where a, = 6sb2/r, c"' = - 4sb2. The solution for $(o*o)(z) can in turn be found from the 
zeroth-order eigenvalue problem given in dimensional co-ordinates by 

( p $ L O , " ) ) s  - (gp,/ci) $(OX') = 0; $("~O) (O)  = $(O,O)(d) = 0, (4) 

for stratified fluid between rigid boundaries ( - d, d) with a plane of symmetry about 
z = 0. For the stratification given by 

p ( z )  = po( 1 - 63 tanh az) ( 5 )  

and with the Boussinesq approximation, the eigenvalue problem given in (4) becomes 

gOa sech2 az 

$ ( O )  = $(d) = 0, Fa)  
the superscripts (0,O) being dropped for the sake of simplicity. Equation (6) is now 
to be solved subject to the boundary condition (6a). 

Equation (6) may be readily transformed into Legendre's equation by using 
7 = tanhaz as the independent variable (see Krauss 1966, pp. 35-38; also Benjamin 
1967) to give 

where we have set (gO/ac,) to be p(p + 1) with p > 0 but not an integer. Equation (7)  
is solved subject to the boundary conditions 

$ ( O )  = $(tanhad) = 0.  (7a) 

The case for infinite depth has been investigated by Benjamin (1967). For that case 
tanh co = 1 andp is then an odd integer n, ofwhich n = 1 is the one ofgreatest interest. 
For most experimental work ad is O(l0) or less. We thus seek a solution to (7) and 
( 7  a )  by expanding the eigenvalue p around the odd integers. For the lowest mode we 
set 

p = 1+s+s2+ ..., (8) 

where 8 N O( 10-l). The solution to (7 )  satisfying the condition $ ( O )  = 0 is the Legendre 
function of order p : 

co 
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FIGURE 3. Theoretical instantaneous streamline pattern above the plane of symmetry. 

where 

(-- l )k  [ ( p -  1) ( p -  3) .. . ( p -  2k+  l)]  [ ( p +  2) ( p +  4) ... ( p +  2k)l. 
Bk = (2k+ l)! 

For the lowest mode, on substitution of (8) into (9), we have to the first order in S the 

The above series converges for 171 < i but extremely slowly. However, it is comforting 
to find that the series has a closed form representation, i.e. 

Q(7) = r+B~7[ln(l-72)1. (10) 

S = [In (coshad)]-l. (11) 

The second boundary condition, $(tanh ad) = 0, now gives 

For ud = 7.5, for example, S = 0.147. 
I n  a frame of reference such that the origin, x = 0 ,  coincides with the peak location 

instantaneously, the first-order solution for @ is now, up to a multiplicative constant 
E", 

sech2 b'ax, 1 In (cosh az) [ In (cosh ad) 
@ = tanhaz 1- 

where b' = (beJ/ad)  and E = ea,. The instantaneous streamline pattern given by (12) 
is shown in figure 3 for old = 7.5 with b' arbitrarily chosen to be 5. Only the part above 
the plane of symmetry is shown in figure 3. 

From the relation a, = 6sb2/r given earlier, we see that b' = (Er/6s)* (old)-l or 

E" = 6 ~ ( a d ) ~  (b')'/r. (13) 
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ad r l  (ad) r s( ad)Z/$ ~ 1 ~ 0  

7.5 - 0.4956 - 3.72 - 1.4613 - 0.0260 
12 - 0.5360 - 6.43 - 2.5590 - 0.0178 
16 - 0.5523 - 8.84 - 3.5623 -0.0139 

TABLE 1. Values of the theoretical constants r and s for given (ad) .  

The constants r and s are determined from the zeroth-order eigenfunction q5 by the 

within the Boussinesq approximation. We note that r and s depend on the value of 
ad. Values of r and s/F0 are tabulated for selected values of ad in table 1.  The maximum 
dimensional horizontal velocity u,,, associated with the wave occurs a t  z = 0 under 
the peak. Therefore, on differentiating the streamfunction with respect to x" and 
setting Z = x" = 0, we obtain 

u ~ ~ ~ / c ~  = (ad) E/E0. (15) 

The zeroth-order wave speed co is given by 

Ct = [(2&] * 

From (3), the dimensionless first-order wave speed, c", is c" = E0+&'. From this, on 
using the relations for a, and c"' immediately following (3), it is seen that 

h / c 0  = - #rE/i?o, (17) 

where Ac/co = ( c -co ) / co  = (i?-i?o)/c"o. From (15) and (17), we get, upon elimination 
of q0, 

Values of r / (ad )  for 7.5 < ad < 16 are shown in table 1.  These values do not vary 
substantially in that range, so that in that range (18) becomes 

Ac/c~  = 0 * 3 5 ~ , , , / ~ ~ .  (18a) 

Equation I8 gives the increase of wave speed Ac due to the nonlinear effect of large 
amplitude as manifested by urnax. For later experimental comparison, urnax is a 
better measure of the amplitude than the displacement amplitude of the isopycnic, 
since the latter is not readily measurable and varies as a function of the depth, de- 
creasing to zero a t  the upper and lower boundaries. 

It should be noted that the theory contains the parameter (ad). Caution should be 
exercised in applying the present results when (ad) is large and a finite. Indeed, for 
the present results to be applicable, p2 = (d/Z)2 must remain small, i.e. O(l0-l) .  The 
wavelength 1 of the solitary wave, to be sure, is not definite, but we may follow Lamb 
(1932) and take 1 to be the length spanned by the wave between the locations where 
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the amplitude is one-tenth of its maximum. For the sech2 wave form given in (12) 
the amplitude is one-tenth when the argument is 1.818. Thus 1 is given by b'al = 3-636 
(i.e. a1 = 3.636/b') whence 

Therefore, for a given ad and an experimentally determined value of b', the theory is 
applicable if p2 is N O( 10-1). 

p2 = (ad)2 (b'/3*636)2. (19) 

3.2. Experimental results and discussion 

A series of experiments was run for 6.9 c ad c 17 with 1-15 > a-1 > 0.45 in. and 
63 = 0.01. The instantaneous streamline pattern of the wave was obtained by streak- 
line photography. The speed of the wave as well as its temporal structure was measured 
by two hot-film probes a t  two horizontal locations at mid-depth. These probes also 
measured the horizontal velocity at  these locations. In  this section, the experimental 
results are presented and compared with the theory of the previous section. The 
agreement between the experimental and theoretical results confirms that the dis- 
turbances are solitary waves obeying the Korteweg-de Vries equation, in the range 
of parameters tested. 

Figure 4(a) (plate 2) depicts a wave travelling to the left in a typical experiment 
(ad = 7 - 5 ,  a-l = 1 in., 63 = 0.01). Figure 4(b) shows the instantaneous flow pattern 
of the streak-line picture of the same wave; the time exposure was one second. The 
picture shows two closed circulation patterns symmetrically located above and below 
the mid-depth of the fluid. The fluid velocity is horizontal at  mid-depth and has a 
maximum value there as seen from the length of the streaks. These qualitative features 
are in agreement with the theoretical findings of the previous section. A closer com- 
parison of the theoretical and experimental instantaneous streamline pattern for the 
same conditions is shown in figure 4 (c) (plate 3). (The theoretical pattern is the same 
one as in figure 3 with ad = 7.5, b' = 3 . )  The streak-line picture was taken at  84 seconds 
after the commencement of the experiment. At  that time the value of b' was determined 
to be 6. (The experimental determination of b' will be discussed presently.) The 
corresponding wavelength I ,  calculated from the formula a1 = 3*636/b', was then 
equal to 18.2 in. The horizontal scale in figure 4(c)  indicates distances in 1 inch 
intervals. The point x = 0 indicates the instantaneous horizontal location of the peak 
of the wave. It is seen from this figure that the agreement is very good indeed. By 
measuring the lengths of the streaks, it is seen that the ratio of horizontal velocity in 
the upper portion to the maximum velocity u,,, a t  mid-depth is approximately 0.15 
at x = 0. This is in good agreement with the theoretical ratio which can be easily 
shown to be equal to 6 at x = 0. For this experiment with crd = 7.5,6 is 0.147 from (1 1) .  

The path of the solitons after their generations is shown schematically in the x-t 
plot of figure 5 where the locations of the probes are also indicated. The two solitons 
emerge at t = 0, reflect, and collide successively as time progresses. Possible time 
delays (or phase shifts) during collisions are omitted in this schematic diagram. We 
denote the soliton travelling to the right when it emerged by R and the one to the 
left by L. The points of collision are expected to be located approximately at  the 
mixer and its conjugate point. An actual representative experimental realization is 
shown in figure 6 where the raw data from the hot-film output is inserted in the x-t 
diagram. For this run, the mixer was placed 106 in. from the left end wall. The first 
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FIGURE 6. Schematic path of the two solitons after their generation in the z-t plot. 
The dotted line indicates the path of the soliton L and the solid line the soliton R. 
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FIGURE 6.  A realization of the velocity record from two hot-film probes, displayed in the z-t 
plot, for the same experiment as shown in figure 4. t is measured from the commencement of 
the experiment and z is measured from the centre of the mixer. See text for a detailed descrip- 
tion. The second probe is near the collision point. 

probe and second probe were a t  443 in. and 107 in. respectively to the right of the 
mixer, which placed the second point at  102$ in. from the right end wall so that the 
second probe was close to the conjugate point. 

The arrival of the soliton R directly after its generation a t  the first probe and then 
the second probe is clearly seen in figure 6. It is also seen that the solitons are followed 
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by a train of internal waves of small amplitude with a rather narrow frequency band 
centred around a period of about 7 s. (The internal waves are difficult to see visually.) 
These manifestations are typical of the solution of the Korteweg-de Vries equation 
for an initial disturbance. The speed of soliton R, determined precisely by the arrival 
time of the peak and the distance travelled, was found to be 1.39 in./s. The soliton 
L arrived at the first probe after reflexion from the left end wall in 186 s, travelling 
a total distance of 256.4 in. giving a speed of 1.36 in./s. The most interesting feature 
occurred at the second probe when soliton L, going to the right, collided head-on 
with the soliton R, moving towards the left after reflecting from the right end wall. 
The hot-film trace from the second probe shows that during the period of interaction 
the horizontal velocity is essentially annihilated. The small residual velocity is due 
to the fact that the probe was not exactly at the collision point. As shown in the trace 
for the first probe, the soliton R re-emerged after the collision as the third bump, 
at t = 280 s, having travelled a total distance of 3 7 4  in. The last bump on the trace 
of the second probe is the re-emerged L soliton which had travelled a distance of 
523i in. in 290 s. The speeds of the emergent waves were both 1.34 in./s. The peak 
amplitudes of the waves were attenuated somewhat. The experiment was continued 
for over 13 minutes beyond the record. 

A number of such experiments was run with complete records of the hot-film 
signals. The hot-film signals were first analysed for the horizontal velocity structure. 
A typical record (raw data) of a soliton wave form on an expanded time scale (1 s = 5 
divisions) is shown in figure 7 (plate 3) for ad = 6.96. If t, denotes the time of arrival 
of the peak, we can construct the curve for the normalized horizontal velocity u/u,, 
as a function of a dimensionless time scale given by 1-2 ( t - tm) / ( t0 - tm) ,  where to is 
the time when u/u,,, is 0.305. This choice of the constants is made since we anticipate 
the curve to follow a sech2 profile and since sech2 (1 .2 )  = 0.305. We may proceed one 
step further. The temporal structure can be converted into a spatial structure in a 
co-ordinate moving with the local wave speed c by setting x = c( t - t , ) ,  since the 
wave speed is a constant during the time of transit of the wave over a fixed probe. 
Thus we write 1 ~ 2 ( t - t m ) / ( t o - t m )  = 1.2x/xo = 1.2(ax)/(axo), where xo is now the 
spatial distance in which the amplitude of the wave drops to 0-305 of the maximum 
value. We also identify 1.2/(axo) with b' in (12). A large number of such wave forms 
were analysed. The normalized velocity structure is shown in figure (8) where u/u,,, 
is plotted against (b'ax). The solid curve is the curve u/u,,, = sech2 (b'ax). It is seen 
that the data agree with the sech2 curve to a remarkable degree of precision. Note 
that only the rising portions of the hot-film signals were used in the analysis. The full 
wave was slightly asymmetric towards the tail of the falling portion as can be seen 
in figure (7) .  For each value of a i n  the various experiments, b' is determined by the 
formula b' = l.2/(ccx0). It should be noted that the data plot in figure 8 is independent 
of a. The determination of b' is of course dependent on a. It was also found that, 
for the same experiment, b' became smaller (i.e. the wavelength became larger) as 
the wave amplitude decreased. 

The agreement of the data with the sech2 curve in figure 8 indicates that the KdV- 
type solution presented herein is valid for the range of parameters tested. To make 
sure that the shallow-water assumption was satisfied, we compute p2 using (19). 
This is shown in table 2 for representative values of b' found in the range of values of 
ad t,esbed. Table 2 shows that the values of p 8 2  are indeed of O( 10-1) as required by the 
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FIGURE 8. Normalized spatial velocity structure a t  mid-depth ( z  = 0) where u/u,,, is plotted 
against b'ax. The solid curve is the curve u/u,,, = sech2 (b'az). Each symbol represents a 
different value of ad (7 < ad < 16). 

ad b' P2 

6.95 
7.5 
8 
8 

15.4 
15.4 
16 
16 

0.20 
0.20 
0.18 
0.19 
0.07 
0.186 
0.14 
0.13 

0.146 
0.170 
0.157 
0.175 
0.088 
0.620 
0.379 
0.327 

TABLE 2. Experimental values of pz. 

theory. Furthermore, these values indicate, a posteriori, that the way the wavelength 
is defined is an appropriate measure of the length scale 1. 

As mentioned a t  the beginning of 3 3, the wave speed of the wave when the ampli- 
tude became unobservably small visually could still be accurately determined by the 
hot-film signal in the final stages of decay. This furnishes us a means of determining 
c,,. The values of c,, obtained for several experiments, all with ii, = 0.01, are listed on 
table 3. These are compared with the theoretical values as calculated by using (16). 
The values of 6 calculated from (11)  are also listed. The values of a-l used were deter- 
mined by the salinity probe at  the end of the experiment. The agreement between the 
experiment and the theory is found to be excellent. Such an agreement is a necessary 
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a-1 Ud 6 co (equation 16) c, (measured) 

1.15 in. 6.9 0.160 1.34 in./s 1.34 in./s 
1.00 in. 7.5 0.147 1.26 in./s 1.26 in./s 
0.76 in. 10.5 0.102 1.12 m./s 1.10 in./s 
0.52 in. 15.4 0.068 0.96 in./s 0.98 in./s 

TABLE 3. Experimental values of co. 
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FIGURE 9. Dependence of wave speed increment Ac/c, on u,,,/co. 
The solid line is the theoretical result. 

check on the experiments since the formula for co as given by (16) is independent of 
the restrictions on the nonlinear theory and is unquestionably valid for the range of 
ad explored. It should be noted that due to the collapse of the mixed region, the value 
of a-l a t  the end of the run was larger than that at the beginning of the experiment 
by about 15% in most runs. This increase is also an indication of the change in 
potential energy between the beginning and end of the experiment. The change in 
potential energy, in turn, is a measure of the energy input of the stirring process for 
the creation of the mixed region. It was observed that more vigorous stirring produced 
larger amplitude solitons and larger increases in a-l a t  the end of the experiment. 

A final comparison with the theory is obtained by plotting the increment of wave 
speed (c - co)/co (= Ac/co) against umax/co. This is shown in figure 9. The solid line 
is the theoretical result given by (18a). The experimental data were from an experi- 
ment with average ad = 16. The large-amplitude results were obtained a t  the begin- 
ning of the experiment, and the small-amplitude results were towards the final stages 
of the experiment. The values of co for the initial and final stages were thus calculated 
from (16)) based on the values of a measured before and after the experiment respec- 
tively, and an intermediate value was used for the intermediate points. It is seen 
from figure 9 that  the agreement is satisfactory in general and very good for smaller 
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values of the amplitude u,,,/c,,. Since the absolute values of urnax were involved in 
this plot, the presence of any hot-film anemometry errors became pronounced. 

We now turn briefly to the question of whether there was any phase shift during a 
head-on collision, or equivalently, a reflexion from the end wall. A typical visual 
collision sequence is shown in figure 10 (plate 4). Picture (a )  was taken a t  approxi- 
mately 6 s before collision, ( b )  a t  approximately mid-collision and ( c )  approximately 
9 s after collision. It is seen that the form of the solitary waves was well preserved 
after undergoing the collision. The timing of the clock and the lack of definition of the 
exact locations of the peaks precluded any conclusions being drawn on phase changes. 
To obtain more quantitative information, experiments were conducted with the two 
hot-film probes placed a t  30in. and 20in. from one end wall so that the time of 
arrival of the peak a t  these two locations before and after its collision with the wall 
can be accurately determined to within one-twentieth of a second. From these arrivals 
the wave speed before and after the collision was found. The temporal phase shift 
was then obtained. The results yielded a negative phase shift of one to two seconds 
with a considerable degree of uncertainty. The uncertainty was mainly due to the 
effect of the end wall on the wave speed. The reflected wave wave speed was further 
complicated by the interaction with the dispersive tail of the incoming wave. I n  view 
of these uncertainties, no correlation of the phase shift with amplitude was possible. 
Nevertheless, the overall effect of the reflexion process appeared to be a hesitation 
of the wave a t  the end wall. 

The authors are indebted to Mr Y. J. Lin for his part in performing the experiments. 
The work is partially supported by the National Science Foundation under grants 
ATM-75-08408 and ENG-77-01496. 
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( b )  

back has a 1 in. spacing. (6) The Same wave at a later timc. 
FIGURE 2 .  (a )  A typical solitary w a v e  soon after its formation. The grid in the 
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FIGURE 4(a, 6). For legend seo facing page. 
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FIGURE 4. (a) Visual view of a solitary wave travelling to the left at  82-5 s after the cornmence- 
ment of the sxperirnent. 6 = 0.01, z-l = 1 in. (b )  The streak-line picture of the same wave at  
approximately the same time. (c) Comparison of experimental and theoretical instantaneous 
stream-line patterns. The lower part is the theoretical pattern of figure 3. 

FIGURE 7 .  A typical temporal record of a soliton wave form as measured by 
the hot-film probe (ad = 6.96). 
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FIGURE 10. A typical visual collision sequence. (a) Approximately six seconds before collision. 
( b )  Approximately at mid-collision. (c) Approximately nine seconds after collision. 
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